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Abstract Two novel 5D NMR experiments (CACONC-
ACO, NCOCANCO) for backbone assignment of disordered
proteins are presented. The pulse sequences exploit relaxa-
tion properties of the unstructured proteins and combine the
advantages of '*C-direct detection, non-uniform sampling,
and longitudinal relaxation optimization to maximize the
achievable resolution and minimize the experimental time.
The pulse sequences were successfully tested on the sample
of partially disordered delta subunit from RNA polymerase
from Bacillus subtilis. The unstructured part of this 20 kDa
protein consists of 81 amino acids with frequent sequential
repeats. A collection of 0.0003% of the data needed for a
conventional experiment with linear sampling was sufficient
to perform an unambiguous assignment of the disordered
part of the protein from a single 5D spectrum.
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Introduction

As much as 25-41% of the proteins in the eukaryotic
genomes contain long regions that do not possess any
regular secondary or tertiary structure (Dunker et al. 2000).
Yet, these intrinsically disordered proteins (IDPs) fulfill a
number of biological functions (Ward et al. 2004). NMR
represents a method of choice for studies of unstructured
proteins at atomic resolution as disordered systems are
difficult to investigate using single-crystal X-ray diffrac-
tion. Already the backbone chemical shifts obtained in the
process of sequential assignment are direct indicators of a
residual secondary structure of IDPs (Eliezer 2007). Cur-
rent state-of-the-art biomolecular NMR offers a variety of
strategies for the backbone resonance assignment. The
standard approach is based on the combination of triple-
resonance experiments that provide the sequential infor-
mation via (a) matching C* and C”? chemical shifts, e.g.
CBCA(CO)NH, HNCACB (Sattler et al. 1999; Pannetier
et al. 2007; Rovnyak et al. 2004), or (b) correlating N
chemical shifts, e.g. HNN, (H)CANNH or hNcaNH,
hNcocaNH (Panchal et al. 2001; Zweckstetter et al. 2001;
Frueh et al. 2006; Sun et al. 2005). A successful applica-
tion of these experiments for the sequential assignment of
IDPs has been reported in several cases (Pannetier et al.
2007; Peti et al. 2001; Yao et al. 2001; Mukrasch et al.
2009; Motackova et al. 2009). However, the referred
experiments may not provide sufficient resolving power for
the unambiguous assignment of IDPs with a very high
degeneracy of backbone chemical shifts. Especially in the
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case of amino acid sequences with highly repetitive motifs,
the assignment by standard biomolecular NMR methods
fails due to severe signal overlaps. Recently, several highly
sophisticated methods that use C* and C” chemical shifts or
N and H" shifts to provide a sequential connectivity in
combination with high-dimensional experiments (5D or
7D) and automated data processing for the assignment of
IDPs were described (Atreya et al. 2004, 2005; Hiller et al.
2005, 2007; Narayanan et al. 2010). Herein we present two
novel 5D NMR experiments for the sequential assignment
of IDPs featuring a severe signal overlap in conventional
spectra. Their application allows backbone assignment
from a single spectrum recorded in a time typical for a
standard 3D experiment. The experiments have been suc-
cessfully tested on a challenging biological system, the
20 kDa partially disordered é-subunit of RNA polymerase
unique for Gram-positive bacteria (BMRB 16912), where
the sequential assignment using conventional methods
completely failed (Motackova et al. 2010b).

Materials and methods
Sample preparation, NMR experiments

The uniformly labeled ['°C, '*N] d-subunit was prepared
as described earlier (Motackova et al. 2010b). The final
sample used for all the NMR measurements consisted of
0.8 mM J-subunit, 20 mM phosphate buffer, pH 6.6,
10 mM NaCl, and 10% D,O. All the experiments were
performed at 301 K. The CACONCACO (Fig. 4) experi-
ment was measured with the spectral widths set to
6,000 (aq) x 2,000 (°N) x 3,125 (**C*) Hz. The maxi-
mal evolution times in the indirectly detected dimensions
were set to 24 ms for the '*C* dimensions, to 50 ms for the
>N dimension and to 32 ms for the '>C’ dimension. The
experiment was measured in a pseudo 2D mode based on
the parameter set for the standard 2D CACO with 8 tran-
sients per increment, and an interscan delay of 0.2 s. The
NCOCANCO (Fig. 5) experiment was measured with the
spectral widths set to 6,000 (aq) x 2,000 (ISN X
3,125 (3C*) x 2,000 (*C’) x 2,000 (**N) Hz. The max-
imal evolutions in the indirectly detected dimensions were
set to 32 ms for the °N dimensions, to 48 ms for the 13
dimension and to 9 ms for the '*C’ dimension. The data
were acquired in a pseudo 2D mode based on the parameter
set for the standard 2D CON experiment with 8 transients
per increment, and an interscan delay of 0.2 s. Both
experiments were recorded with 1,024 complex points
in the acquisition dimension and 1,800 hypercomplex
points were randomly distributed in the indirectly detected
dimensions (see “Sampling scheme”). Auxiliary 3D
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(CACO)NCACO and (NCO)CANCO experiments were
acquired using the proposed pulse sequences excluding the
evolution of the chemical shift in #; and f,. The
(CACO)NCACO experiment was run with the following
settings. Spectral widths were set to 6,000 (aq) x 3,125
(3C*% x 2,000 ('N) Hz. The maximal evolution times in
the indirectly detected dimensions were set to 24 ms for the
13C* dimension and to 50 ms for the '°N dimension. The
experiment was acquired with 8 scans per increment and a
single scan recycling delay of 0.2 s. One thousand and
twenty-four complex points were recorded in the acquisi-
tion dimension and the overall number of 900 hypercom-
plex points has been detected in the indirectly detected
dimensions. The (NCO)CANCO experiment was acquired
with the spectral widths set to 6,000 (aq) x 2,000
(>N) x 3,125 (!3C*) Hz. The maximal evolution times in
the indirectly detected dimensions were set to 32 ms for the
>N dimension and to 48 ms for the '*C* dimension. The
data were recorded with 8 scans per increment and a single
scan recycle delay of 0.2 s. The total number of 1,024
complex points was acquired in the directly detected
dimension and 900 hypercomplex points were detected in
indirect dimensions. The data were acquired on a 600 MHz
Bruker Avance II spectrometer equipped with the first
generation Bruker 'H/'*C/">N TCI cryogenic probehead
with the z-axis gradients (S/N = 612 at the time of mea-
surement in a standard '*C sensitivity test on ASTM). In
addition, the CACONCACO experiment was also mea-
sured on a 700 MHz Bruker Avance I spectrometer
equipped with the Bruker 'H/'*C/"°N TXO cryogenic
probehead with the z-axis gradients dedicated for the '*C-
direct detection (S/N = 2,800 at the time of measurement
in a standard '°C sensitivity test on ASTM) with the
spectral widths set to 10,600 (aq) x 5,000 (13C“) X
3,125 (°N) x 4,000 (*C’) x 5,000 ('°C*) Hz. The max-
imal evolution times in the indirectly detected dimensions
were set to 26 ms for the '*C* dimensions, to 48 ms for the
>N dimension and to 30 ms for the '*C’ dimension. The
experiment was recorded with 4 transients per increment
and an interscan delay of 0.3 s. The total number of 1,024
complex points was acquired in the directly detected
dimension and 800 hypercomplex points were detected in
the indirect dimensions.

Sampling scheme

Non-uniform sampling of the indirectly detected dimension
was utilized in the presented application. The Poisson disc
sampling scheme (Kazimierczuk et al. 2008), which
introduces the distance constraints between the individual
time points, was selected to generate the time schedule.
Such a sampling scheme was shown to reduce the level of
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sampling artifacts in the signal vicinity (Kazimierczuk
et al. 2008). To create a sampling scheme, a new time point
was randomly placed at the four-dimensional space, how-
ever, the minimal distance between the individual time
points was defined. For that purpose, four-dimensional
ellipsoids with the centres in each point present in the time
schedule were created. The new point was accepted if its
ellipsoid was not intersecting with any other ellipsoid,
otherwise, the new point was rejected. If rejected, the
different time point was randomly placed in the four-
dimensional time space and the validation procedure was
repeated. The individual radii of the ellipsoids created
around the time point were set to:

o SW2 . tanax . SW3 . t?ax . SW4 . lflmx

“T BN 3 (1)
8N (SW - finax)

gy = 2 [SWi P SWs 53 - SW, - 2)
V8N (SW, - tzmax)3

gy =2 [SWi P SW, 53 - SW, - 3)
’ V8N (SW3 - tgnax)3

g O [SWLATSWa SWy
€/§N (SW4 . tglax)3

where o, N, SW;, and ™ are: factor regulating the dis-
crepancy of generated points (¢ = 0.8), total number of
generated time points, spectral width, and maximal evo-
lution time for individual indirect dimensions, respectively.
If the number of attempts to place the new point in the time
space reached the relaxation condition T (7 =5 - N), the
individual radii of the ellipsoids were reduced (each radius
was multiplied by a factor 0.9999) and the whole procedure
was repeated until all points were generated. The overall
number of N = 1,800 (N = 800 in the case of the data
acquired at 700 MHz) points was placed in the four-
dimensional time space. Finally, the constant density of the
generated time points was transformed to the decaying
density of points according to the Gaussian distribution
(6 = 0.5).

Data processing

The 3D experiments were processed using Multidimensional
Fourier Transform (MFT). Before applying MFT, the data
were square cosine weighted, zero-filled to 2,048 points and
transformed using the FFT algorithm in the directly detected
dimension using spectral processing and analysis system
NMRPipe/NMRDraw 3.0 (Delaglio et al. 1995). The num-
ber of spectral points was set to 1,536 in both indirectly
detected dimensions. The non-uniformly sampled 5D data
were processed using Sparse Multidimensional Fourier

Transform algorithm (SMFT). The recorded data were
square cosine weighted, zero-filled to 2,048 points, and
transformed with the FFT algorithm in the directly detected
dimension prior to SMFT. The number of spectral points was
set to 512 in w; and w, (Cl?‘fl,CLl in the case of CA-
CONCACO, and N;,, C; in the case of NCOCANCO). All
the spectra were analyzed in a graphical NMR assignment
and integration software Sparky 3.115 (T.D. Goddard and D.
G. Kneller, University of California, San Francisco, USA).

Results and discussion

The o-subunit of the RNA-polymerase unique for Gram-
positive bacteria is a 20 kDa partially unfolded protein that
was shown to be important for the virulence of Staphylo-
coccus aureus and Streptococcus agalactiae (Seepersaud
et al. 2006). Although early studies of the d-subunit can be
tracked back to almost 30 years ago (Achberger et al.
1982), its function still remains unclear. In our previous
study, we have determined the structure of the well ordered
N-terminal domain of the J-subunit from Bacillus subtilis
(Motackova et al. 2010a). Apart from the well ordered
N-terminal region (91 amino acids), the full-length protein
comprises a disordered C-terminal end (81 amino acids)
that contains high incidence of sequential repeats in the
primary structure. The sequential repeats cause severe
clustering of the backbone chemical shifts, which makes
the biologically relevant full-length é-subunit a challenging
sample for an NMR study. The poor chemical shift dis-
persion of nuclei employed in standard triple-resonance
experiments used for sequential assignment (Sattler et al.
1999) is demonstrated in Fig. 1. Figure la and b show the
clustering of the C* and C” chemical shifts, respectively.
For example, two most frequently present amino acids in
the sequence of the C-terminal region of the J-subunit,
aspartic acid (25 residues) and glutamic acid (23 residues),
have their C* and C” chemical shifts distributed within
0.8 ppm (with 14 C? chemical shifts in a range of
0.2 ppm), which makes the J-subunit a very difficult target
for assignment strategies based on C* and C” resonance
frequencies. The comparison of the C* and C” chemical
shift degeneracy of the o-subunit and other proteins is
depicted in Fig. 2. All the proteins described as disordered,
unfolded, or unstructured in their BMRB entries, as well as
two large structured proteins (malate synthase G and
maltose binding protein), were used for that purpose.
Figure 2 demonstrates that the J-subunit exhibits one of the
highest C*CP chemical shift degeneracy among unstruc-
tured proteins studied so far. As a consequence, attempts to
use the conventional assignment strategy based on match-
ing the C* and C” chemical shifts in triple-resonance
experiments completely failed for the J-subunit. The data

@ Springer



~

J Biomol NMR (2011) 50:1-11

o 14t A 14+ B
S 12 12
=
S 10 10
€
2 s 8
[$]
S 6 6
S 4 4
£
2 2 2
0 0
54.0 56.0 58.0 60.0 62.0 200 25.0 30.0 35.0 40.0
F:3(°c”)/ppm F:3(°c?)/ppm
9 9
2 C sl D
s 7 7
S s 6
§ s 5
<
S 4 4
(o]
g 3 3
g 2 2
21 1
0 | 0 |
767880 82 8.486 8.8 1750 1760 177.0
F:5('H)/ppm F:3(%C’)/ppm

Fig. 1 Distribution of the chemical shifts of the disordered region of
the J-subunit. The bin size was set to 0.2 ppm for C* (a) and C*
(b) chemical shifts. The bin size for HY (¢) and C’ (d) chemical shifts
was set to 0.02 and 0.04 ppm, respectively

used in the analysis shown in Figs. 1 and 2 was obtained in
our previous study, where a set of SD proton detected NMR
experiments HN(CA)CONH and HabCabCONH, measured
at a 700 MHz spectrometer, was utilized to perform the
backbone assignment (Motackova et al. 2010b). To make
the process of the backbone assignment more efficient, we
have designed two novel experiments that allow for the
assignment of such a difficult system from a single 5D
spectrum, providing thus all the relevant chemical shifts in
one experiment and at identical conditions.

To overcome the degeneracy in the frequencies, four
non-traditional tricks were combined in the experimental
design. (a) The direct 13C detection (Bermel et al. 2003,
2006a, 2006b; Knoblich et al. 2009; Perez et al. 2009) was
employed to take advantage of the high dispersion of car-
bonyl signals (Fig. 1c, d). To allow for the direct com-
parison of the HY and C’ chemical shift dispersion, the
graphs in Fig. lc, d were plotted for the same range of
resonance frequencies (500 Hz). The magnetogyric ratio
for C’ and signal linewidth were used to scale the bin size
for the C’ chemical shifts with respect to the HY. Figure 1c
and d clearly show a higher dispersion of the chemical
shifts in the case of the direct C' detection. (b) The reso-
lution in the indirect dimensions was maximized by
extending the maximal evolution times, taking advantage
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Fig. 2 Comparison of the C* (a) and c? (b) chemical shift
degeneracy of the J-subunit (red) with all proteins described as
disordered, unfolded, or unstructured in their BMRB entries (blue),
and with two large structured proteins, malate synthase G (723
residues, green) and maltose-binding protein (370 residues, yellow).
Each column displays a maximal number of resonances observed
within a 0.2 ppm chemical shift window for a given protein. The
BMRB codes are indicated below the bars

of relatively slow R, relaxation rates in IDPs. To accelerate
the data collection, non-uniform sampling (NUS) was
applied (Stern et al. 2002; Freeman et al. 2004; Orekhov
et al. 2001; Marion 2006; Kazimierczuk et al. 2007;
Malmodin and Billeter 2005; Mobli et al. 2008; Bretthorst,
2008). From available approaches, the Poisson disc sam-
pling scheme (Kazimierczuk et al. 2008), which suppresses
the level of sampling artefacts in a peak vicinity, was uti-
lized. (c) Five-dimensional experimental arrangement
empowered by implementation of NUS was found efficient
to remove overlaps and ambiguities in the assignment
procedure. (d) The methods for the optimization of longi-
tudinal relaxation were employed to increase the acquisi-
tion rate and sensitivity of the measurements (Pervushin
et al. 2002; Schanda et al. 2005; Bermel et al. 2009).
Although the applied ideas have already been described
in the literature, their combination and the resulting bene-
fits have not been reported yet. In order to quantify the
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impact of the individual elements, three general parameters
can be evaluated: relative resolution, given by product of
chemical shift range and maximal evolution ™* time in
each dimension; sensitivity, decaying exponentially with
—R,™ in each (indirect) dimension; and overall experi-
mental time, proportional to the number of increments.
Using 13C direct detection, the resolution in the directly
detected dimension was increased 3.0 times compared to
the scheme relying on amide proton detection in the case of
the 5-subunit. The inherently lower sensitivity of direct '>C
detection is partially regained thanks to the favorable
relaxation properties of '>C at 600 or 700 MHz. Intro-
duction of NUS to the indirect dimensions allows us to
improve resolution by extending the maximal evolution
times without increasing the number of increments until the
limit of the natural linewidth is reached. Higher dimen-
sionality offers another increase in resolution. In order to
compare the effects of NUS and dimensionality, a simple
comparison of 3D and 5D constant-time versions of a
hypothetical experiment with identical R, and ™ for each
dimension can be made. Higher sensitivity of the 3D ver-
sion allows to acquire spectra with the same signal-to-noise
ratio for the same number of increments with doubled
lengths of the evolution periods of the 3D experiment
compared to the 5D version. It corresponds to the four-fold
enhancement in the resolution of the 3D version. On the
other hand, the additional dimensions of the 5D experiment
increase resolution by a factor of 100 (calculated for
1/f"** = 0.1 x chemical shift range in each dimension). It
shows that the effect of extending dimensionality is sig-
nificantly higher. Resolution enhancement for the actual
setting of the 5D experiments presented in this paper was
~200-500, compared to 3D versions of the experiments
with similar /™** values. The major benefit of NUS is the
reduction of the experimental time, necessary to perform
the 5D experiments in practice. The 5D spectra recorded in
this study were acquired in 0.02% (NCOCANCO at
600 MHz), 0.01% (CACONCACO at 600 MHz), and
0.0003% (CACONCACO at 700 MHz) of the theoretical
durations of the corresponding uniformly sampled 5D
experiments. A further two-fold to three-fold reduction of
the measurement time was gained by the optimization of
the longitudinal relaxation that allowed us to shorten the
single scan recycle delay to 0.2-0.3 s. In summary,
~ 600-1,500-fold resolution enhancement was achieved
without increasing the measurement time.

The most important improvement of the assignment
efficiency was achieved by correlating C*,C’ or N, C' fre-
quencies of neighboring residues instead of matching
poorly dispersed C~ CP chemical shifts or correlating
N, H™ frequencies (with lower dispersion of chemical shift
of HY compared to C’). Two novel 5D experiments,

CACONCACO and NCOCANCO, providing such corre-
lations and utilizing the elements listed above, were
designed. Each of them is based on a different correlation
with the distinct area of applications (vide infra). The
magnetization transfer within the experiments is depicted
in Fig. 3. The CACONCACO experiment exploits H* as a
starting point of magnetization transfer and correlates fre-
quencies of C? [, C. ,N;,C, and C, (Fig. 3a). The
sequential information is contained in the C* and C'
chemical shifts. The NCOCANCO experiment starts from
H" and carries information on N;,,C},C*N;, and C,_,
chemical shifts (Fig. 3b). The sequential connectivity is
contained in the C’' and N chemical shifts. The described
scheme makes CACONCACO the experiment of choice in
the case of proline rich proteins or in spectra with a good
dispersion of C* signals. The second experiment, NCO-
CANCO, is preferable when measuring deuterated proteins
or in the case of spectra with high N signal dispersion. The
pulse sequences for CACONCACO and NCOCANCO are
depicted in Figs. 4 and 5, respectively. Although the
chemical shift of "H is not measured in any of the exper-
iments, the 'H polarization was chosen as a starting point
for magnetization transfer to maximize the sensitivity. A
refocused INEPT transfer step referred to as “H-flip”
(Bermel et al. 2009) was implemented in the case of
CACONCACO for the enhancement of the longitudinal
relaxation (Pervushin et al. 2002). Bipolar gradients
(Sklenat 1995) were added to avoid radiation damping. HY
selective pulses were employed in the NCOCANCO
experiment for the same purpose (Schanda et al. 2005). To
further maximize the sensitivity, the magnetization transfer
through the 2J(NC*) coupling was suppressed (Brutscher
2002; Fiotito et al. 2006). The suppression of the back
transfer of magnetization is performed during the period
denoted as 3 in Figs. 4 and 5. The Cartesian product

Fig. 3 Magnetization transfer in the CACONCACO (a) and NCO-
CANCO (c) experiments (blue arrows). The back transfer of
magnetization (grey arrow) via 2J(NC?) is actively suppressed within
the pulse sequences. The evolution times in the individual detected
dimensions are indicated in brown. The maximal evolution times in
indirect dimensions of the constant-time versions of experiments can
be stretched to ' = 27.0 ms, £ = 32.0ms, 5" = 50.0 ms, £;'** =
27.0ms (CACONCACO) and to ™ = 32.0ms, 5™ = 9.0 ms, 7% =
54.0ms, £;* = 32.0ms (NCOCANCO)
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Fig. 4 Pulse scheme of 5D CACONCACO experiment. The carrier
frequencies were placed at 4.7 ppm for 'H, at 123.0 ppm for '°N, and at
175.0 ppm for 3C’, or 58.0 ppm for '*C* The arrows indicate the
switching of the '>C carrier frequency. Narrow and wide symbols stand
for 90° and 180° pulses, respectively. The pulses were applied with the
x phase unless noted differently. The rectangles represent non-selective
pulses, whereas the round shapes represent selective pulses. The
320 ps 90° Q5 (or time-reversed Q5) and 256 ps 180° Q3 were used for
13" and 3C%"3C excitation resp. inversion at 600 MHz. 1,000 ps Q3
(denoted with asterisk) were used for selective inversion of '>C* with
respect to *CP. BSP denotes pulses for compensation of the off-
resonance effects. The IPAP acquisition scheme was implemented to
avoid signal splitting due to the 3C*—13C’ coupling. The line denoted
with G stands for pulsed field gradients applied along the z-axis. G,
(1,750 ps) and G, (1050 ps) are rectangular 1.2 G/cm pulses shape
whereas the rest of the gradient pulses is of a sine-bell shape (1,000 ps).
The GARP4 pulse train was used during the acquisition for N
decoupling. The following phase cycling was employed: ¢3 = x, — x;

operators (Sgrensen et al. 1984) at the beginnings of the
13 periods are given by N;C7,C;* and C;*C{ N} for
CACONCACO and NCOCANCO (Fig. 3), respectively.
Both 'J(NC* and 2J(NC%) scalar couplings are active
during this period (as well as the J(NC') coupling
employed to refocus the carbonyl magnetization), and
lead to the evolution of operators N:C;** for the desired
transfer of magnetization and NiC*, for the suppressed
transfer in the case of CACONCACO, and to the evolu-
tion of C;*N? for the desired transfer and C;*Nj, for the
suppressed transfer of magnetization in the case of
NCOCANCO at the end of t; period. The transfer
amplitudes for the states described by the individual
operators are given by:
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¢q = 2(x), 2(— x); dsip = 4(x), 4(— x); dsap = 4(), 4(— y);
b6 = x, 2(— x), x, — x, 2(x), x. The initial lengths of the delays were:
y=1.8ms,y = I.1ms,A; = 4.5 ms,A; = 13.5 ms,A; = 16.0 ms,
Ay =25.0ms, Ag = 4.5ms, A’2 =A, — A],Ag = A4 — A;. The con-
stant-time mode of chemical shift evolution was implemented in all
indirect evolution periods (t1, t,, t3, t4). The evolution of the chemical
shift can be switched to the semi-constant time mode to further increase
the resolution in resulting spectra when necessary. The building block
for evolution of the chemical shift in semi-constant time mode is
indicated below the diagram. The pulses denoted with “D” were
continuously centred with respect to 75 + 1'2’, and 75 delays. The initial
length of the incremented delays were set to: £3(0) = 16.0ms,
£5(0) = 0.0ms, and #5(0) = 16.0 ms and the increments were adjusted
to A = 1/2SW,, Aty = —£5(0)/TD,, Af) = 13 — 15, where the SW
and TD denote spectral width and number of complex points acquired in
given indirect dimension in the case of uniform sampling, respectively.
Quadrature detection in the indirect dimensions was achieved by
incrementing phases ¢, ¢, ¢3, ¢4 in a States manner

NiCH* :sin(n-! J(NC?) - 13) x sin(n 2 J(NC*) - 13)  (5)
NiCH, < cos(m -! J(NC?) - 15) x cos(n > J(NC*) - 13)  (6)
C/*N; @ sin(m -! J(NC*) - 15) x sin(n -2 J(NC?) - 13)

x cos(m - J(C*CPF) - 13) (7)
CHNZ, |« cos(n L J(NC*) - 13) x cos(m -2 J(NC?) - 1)
x cos(m - J(C*CP) - 13). (8)

Transfer efficiencies of the operators described by Egs. (5,
6), and (7, 8) are plotted in Fig. 6a, b, respectively. The
values of #3 = 50 ms in the case of CACONCACO, and
t3 = 54 ms in the case of NCOCANCO experiment were
found optimal to minimize the transfer of magnetization
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Fig. 5 Pulse sequence of 5D NCOCANCO experiment. The carrier
frequencies for the hard and shaped 'H pulses were placed at 4.7 and
8.2 ppm, respectively. The carriers for >N were placed at 123.0 ppm,
and at 175.0 ppm for '3C’, or at 58.0 ppm for '>C*. The arrows indicate
the switching of the 13C carrier frequency. Narrow and wide symbols
stand for 90° and 180° pulses, respectively. The pulses were applied
with the x phase unless noted differently. The rectangles represent N
and 'H non-selective pulses, the round shapes represent selective 'H
and °C pulses. The 90° E-burp pulses of the length of 1,600 ps (the first
one applied in time-reversed mode) and 180° RE-burp pulses of the
length of 1,700 ps were applied for selective excitation resp. inversion
of 'HN. The 320 ps  90° Q5 (or time-reversed Q5) and 256 ps 180° Q3
were used for *C’ and '3C*'C* excitation resp. inversion at
600 MHz. BSP denotes pulses for compensation of the off-resonance
effects. The IPAP acquisition scheme was implemented to avoid signal
splitting due to the '*C*—!3C’ coupling. The line denoted with G stands
for pulsed field gradients applied along the z-axis. All gradient pulses
are of a sine-bell shape of the length of 1,000 ps. The GARP4 pulse train
was used during the acquisition for >N decoupling. The following phase
cycling was employed: ¢; =x, —x; ¢g=2(x), 2(— x); ¢d1p =
4(x), 4(— x); priap = 4= ¥), 40); P = x, 2(— x), x, — x, 2(x), x. The

via 2J(NC?*) coupling and maximize the sensitivity of the
experiments.

To retrieve the frequency information from the 5D data,
a set of reduced dimensionality spectra can be recorded and
coupled with the automated data analysis (Atreya et al.
2004; Hiller et al. 2005; Narayanan et al. 2010), or tech-
niques to recover the spectrum of full dimensionality
(Kazimierczuk et al. 2010; Zawadzka-Kazimierczuk et al.
2010) can be employed. The latter approach was utilized in
the presented application due to its similarity to the han-
dling of standard 2D and 3D spectra. As processing of 5D
data to a full 5D spectrum would demand terabytes of disc

initial lengths of the delays were: & = 395 us,d = 1.876ms,A; =
4.5ms, Ay = 13.5ms, A3 = 16.0ms, As = 27.0ms, Ag = 16.0ms, A}
=A; — 5’,A’5 = A5 — Al,Ag = Ag — AZ,A; = Ag — A;. The constant
time mode of the evolution of chemical shift was used in all indirect
evolution period (11, t,, t3, t4). The evolution of the chemical shift can be
switched to the semi-constant time mode to further increase the resolution in
resulting spectra when necessary. The building blocks the semi-constant
time mode are indicated below the diagram. The pulses denoted with “D”
were continuously centred withrespectto £ + 19, £ + 15, £ + 15, £, 15, and
15 delays. The &' was initially set to 1.876 ms and continuously adjusted to
completely refocus the 'HN-N coupling. The initial length of the
incremented delays were set to: 7 (0) = #(0) = 16.0ms, 5 (0) = #5(0)
= 4.5ms, £4(0) = 13.5ms, 5(0) = 16.0ms, £(0) = £(0) = £(0) =
0.0ms, A7 = #5(0) — #(0), and the increments were adjusted to At} , , =
1/2SWin4, Ay 5y = —15,4(0)/TD124, AR5y = 1,4 — 15,4, where
SW; and TD; denotes spectral width and number of complex points acquired
in given dimension in the case of uniform sampling, respectively. Quadrature
detection in the indirect dimensions was achieved by incrementing phases
b7, P, Do, ¢1pin a States manner

space, only 2D cross sections of the 5D matrix were cal-
culated using the Sparse Multidimensional Fourier Trans-
form (SMFT) algorithm (Kazimierczuk et al. 2009). First,
three-dimensional versions of the proposed experiments
correlating N;,C¥,C} in the case of CACONCACO
(Fig. 3a) and C},N;, and C;_, in the case of NCOCANCO
(Fig. 3b) were measured and signals were identified in the
obtained 3D spectra. Then, 2D cross sections (C¥ C§—1 in

i—1
the case of CACONCACO and N,~+|,C§ in the case of
NCOCANCO) from the 5D data that carry the sequential
information were calculated for each triplet of frequencies

measured in the 3D experiment. The resulting spectra are
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Fig. 6 Plots of transfer amplitudes defining transfer efficiencies of
the operators in Eqgs. (5, 6) (a), and Eqgs. (7, 8) (b). The values of
1J(NC* = 11.0 Hz, 2J(NC*) = 7.0 Hz, J(C*C?) = 35.0 Hz (Sattler
et al. 1999) have been used for the purpose of plotting the graphs

very simple and offer direct interpretation. Such spectra are
well suited for automated peak-picking and analysis.
Nevertheless, the manual assignment was prioritized in the
presented application. This approach allows visual
inspection of the problematic regions in the spectra as well
as eventual corrections in the peak picking. The manual
assignment procedure for the NCOCANCO experiment is
outlined in Fig. 7. The position of the kth peak (cyan)
selected in the auxiliary 3D spectrum (a) is given by fre-
quencies o}, w%, wk corresponding to the chemical shifts of
the C¥,N;, and C;_,, highlighted in the 3D peak list (b). A
2D cross-section of the SD spectrum is calculated for these
three frequencies (c). Frequencies w!, w4 of the peak
observed in the 2D cross section (d) provide chemical
shifts of N, ; and C; from the following residue. In the next
step, a column at wft! = wk, wt™ =, containing the
violet (k + 1)th peak, is selected in the 3D spectrum. The
next 2D cross-section is then calculated for the frequencies
Wkt @kt

)

,co’;“ of the violet peak and the whole proce-
dure is repeated. The assignment protocol for the CA-
CONCACO experiment is analogous but it proceeds in the
opposite direction, i.e., the preceding residue is defined in
each step.

The resolution enhancement in the measured 5D spectra
is demonstrated in Fig. 8, comparing 2D cross-section of
5D NUS NCOCANCO, and a plane from a uniformly
sampled 3D HNCO. It should be noted that the maximal
evolution time of the C’' dimension of the 2D cross-section
displayed in Fig. 8 (right) was the shortest one of those
used in this study. Two examples of the 2D cross sections
for the NCOCANCO experiment are shown in Fig. 9a, b.
The spectrum in Fig. 9a contains a single peak that gives
the sequential connectivity directly. Note that such unam-
biguous assignment (based on N, C' correlations) was
obtained for two residues in a stretch of four glutamates
(E168-E171), which C* and C? chemical shifts are in the
range of 56.434-56.602 and 30.205-30.519 ppm, respec-
tively. The spectrum in Fig. 9b contains two peaks

@ Springer
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Fig. 7 Schematic diagram of the processing and manual assignment
procedure for the 5D data

indicating that C,N;, C._, frequencies of two amino acids
are almost identical and cannot be resolved in the 3D
experiment (Fig. 9c). Thanks to the gain in resolution
given by additional two frequencies, such problematic
regions can be resolved in the 5D spectrum (Fig. 9b).
Subsequently, two possible routes are followed in the
assignment protocol (Fig. 7) until one of them is ruled out.

One hundred percentage of the '°C and '°N backbone
chemical shifts of the 81 amino acid long disordered part of
the protein were assigned by each experiment. The time
needed to perform the manual assignment did not exceed
24 working hours. The correctness of the assignment
obtained from a single spectrum (either NCOCANCO or
CACONCACO) was confirmed by a comparison with the
assignment derived from a combination of 'H-detected 5D
HN(CA)CONH and HabCabCONH spectra recorded at the
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Fig. 8 Plane from a uniformly sampled 3D HNCO spectrum at
5('H) = 8.42 ppm showing the region of the spectrum containing the
resonance signal of D16IN-E160C (left), and 2D cross-section from
5D NCOCANCO experiment calculated showing the D161N-E160C
resonance signal (right). The contour threshold was set to 40% of the
selected peak height
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Fig. 9 2D cross-sections from the 5D NCOCANCO experiment
(a, b; inset in panel A applies to both panels) showing sequential
connectivity peaks for the frequencies (marked green) of E170CA-N-
E169C (a), D113CA-N-L112C, and D126CA-N-L125C (b). The strip
from NUS 3D '3C detected CBCACON experiment at '°N frequency
121.059 ppm (c)

700 MHz spectrometer (Motackova et al. 2010b). The data
acquisition on the 600 MHz spectrometer with the first
generation cryoprobe took 60 h per experiment, which
constitutes less than 0.02% of time needed for a conven-
tional experiment with linear sampling using similar

settings. The acquisition of the CACONCACO experiment
on the 700 MHz spectrometer with a state-of-the-art probe
providing 4.5 times higher sensitivity for direct '*C
detection took 14.5 h, which covers 0.0003% of time of the
conventional experiment with similar settings.

The described assignment method should be compared
to the recently published state-of-the-art approaches. A
direct comparison to our recent work (Motackova et al.
2010Db) is possible as identical samples were used and data
acquired at the same magnetic field are available. In both
cases, a complete backbone assignment of the disordered
highly repetitive C-terminal domain was achieved. Using
pulse sequences presented in this article, we were able to
obtain data needed for the complete assignment with
comparable signal-to-noise ratio from one experiment in
one third of the time of the experiments reported previously
(Motackova et al. 2010b). This demonstrates that the pulse
sequences described in this paper can save the overall
experimental time in spite of the inherently lower sensi-
tivity of '*C detection. However, the major progress of the
approach presented here is a dramatic simplification of the
assignment procedure. The proton-detected SD HN(CA)-
CONH spectrum (Motackova et al. 2010b) allowed us to
find sequential connectivities for 10 short fragments of the
sequence. The 5D HabCabCONH spectrum was then used
to classify residue types in the fragments (based on typical
H* H”, C* C” chemical shifts) and thus to identify posi-
tions of the fragments in the amino acid sequence. On the
contrary, the assignment procedure described in this paper
(Fig. 7) provided sequential assignment from a single
spectrum (CACONCACO or NCOCANCO) in a straight-
forward manner and therefore in a much shorter time
needed to complete the analysis. A full set of 2D cross-
sections of the SD CACONCACO experiment shown in
Fig. S1 of Supplementary Material documents the effi-
ciency of the described assignment protocol. In addition,
the fact that all chemical shifts are derived from one
spectrum guarantees that all frequencies are measured at
identical conditions. It may be particularly important in the
case of highly repetitive IDP sequences, where e.g. minor
temperature differences originating from nonidentical
sample heating of individual experiments may complicate
the identification of chemical shifts showing extremely low
dispersion.

Automatic assignment of 93% non-proline and 83% total
amino acids of the 441-residue protein Tau (Narayanan
et al. 2010) from 7D HNCO(CA)CBCANH and 5D HAC-
ACONH APSY (Hiller et al. 2005, 2007) spectra represents
another recent approach that should be discussed in the
context of this study. The 2.5 fold difference in the size of
the assigned proteins does not allow to compare the per-
formance of the approaches directly. The higher (100%)
percentage of assigned residues and shorter measurement
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time (14.5 h at 700 MHz vs. 60 h at 900 MHz) of our
approach can be at least partially attributed to the smaller
size of the oO-subunit. On the other hand, the published
spectra of protein Tau (Narayanan et al. 2010; Mukrasch
et al. 2009) exhibit better chemical shift dispersion than the
spectra of the J-subunit (Motackova et al. 2010b). Never-
theless, the comparison of these studies shows that both
strategies can be considered complementary, our approach
being well suited for smaller proteins with extremely low
signal dispersion. For such applications, the presented pulse
sequences provide several benefits: (a) The 5D CACONC-
ACO experiment allows to determine sequential connec-
tivity for proline residues. (b) Avoiding magnetization
transfer via amide protons makes the 5D CACONCACO
experiment beneficial for studies of systems at high pH.
(c) While the 7D APSY relies on the correlation of N, HY
frequencies, our experiments exploit N, C' or C*C’ corre-
lations with higher resolution given by the higher dispersion
of the C’ chemical shifts. (d) The manual interpretation of
our 5D spectra is very simple and provides additional
transparency and flexibility over the automated protocols as
spectral regions with potential overlaps can be visually
inspected and peak picking can be manually corrected if
needed.

Conclusions

In conclusion, we have presented an approach for the
unambiguous assignment of IDPs with high degeneracy in
the amino acid sequence from a single 5D spectrum that
maximizes the resolution and minimizes the experimental
time. To our knowledge, this is the first application of
direct '*C detection to an experiment with dimensionality
higher than three. The sequential connectivity is encoded in
C’,N or C,C* frequencies rather than in C*, C? or N, HY
chemical shifts, which reduces the probability of an
ambiguous assignment. Moreover, each experiment pro-
vides two chemical shifts (C', C*) that are commonly used
to assess the residual secondary structure content of the
IDPs (results for the o-subunit will be published else-
where). Our results demonstrate that, despite the inherently
lower sensitivity of '*C detection, a complete assignment
of an IDP with high degeneracy in primary sequence can be
easily obtained even on a low field magnet (600 MHz)
equipped with a relatively old cryogenic probe (see
“Materials and methods”).
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